10 resultados para Escherichia-coli

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni2+-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed expedient and reliable methods to isolate cyclosporin synthetase for in vitro biosynthesis of cyclosporins. We have examined enzyme purification strategies suited to large-scale processing and present a chromatographic sequence that serves as a pilot model for industrial scale preparation of cyclosporin synthetase from cyclosporin producing fungi. A chromatographic sequence consisting of ammonium sulfate precipitation → gel filtration → hydrophobic interaction chromatography → anion exchange chromatography, yielded an electrophoretically homogeneous cyclosporin synthetase preparation (Coomassie G-250 brilliant blue staining). Furthermore, a native polyacrylamide gel electrophoresis system was developed for the isolation of active cyclosporin synthetase enzyme from crude extracts of cyclosporin producing fungi. The environmental factors affecting enzyme stability and the continuity of the in vitro cyclosporin biosynthetic reaction-temperature, pH, and substrate depletion were assessed and manageable conditions have been defined for sustainable cyclosporin biosynthesis with enzyme isolates. Cyclosporin synthetase exhibited an optimal temperature range of 24–29 °C and a pH optimum of 7.6. The native enzyme displayed a pI of 5.7, as determined by isoelectric focusing. The industrial implementation of an in vitro biosynthetic approach could potentially prove useful for the production of important therapeutic cyclosporins which occur as only minor fermentation by-products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metagenomics provides culture-independent access to gene pool of the whole microbial communities. To identify genes responsible for salt tolerance in unculturable bacteria, Escherichia coli clones were enriched with an ability to grow at inhibitory NaCl concentrations (750 mM) from a pond water metagenomic library. From two unique clones, genes encoding for proteins with similarity to a putative general stress protein (GspM) harbouring GsiB domain and a putative enoyl-CoA hydratase (EchM) were identified to be responsible for salt tolerance. The gspM was expressed by its native promoter whereas the echM was expressed from the lacZ promoter of the plasmid. EchM was overexpressed with a hexahistidyl tag. Purified EchM showed crotonyl-CoA hydratase activity. These genes have potential application in generating salt tolerant recombinant bacteria or transgenic plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the organism contains many redundant reactions, the minimal feasible metabolic network that contains the basic growth function is not the collection of reactions that associate the essential genes. To identify minimal metabolic reaction set is a challenging work in theoretical approach. A new method is presented here to identify the smallest required reaction set of growth-sustaining metabolic networks. The content and number of the minimal reactions for growth are variable in different random processes. Though the different carbon sources also vary the content of the reactions in the minimal metabolic networks, most essential reactions locate in the same metabolic subsystems, such as cofactor and prosthetic group biosynthesis, cell envelope biosynthesis, and membrane lipid metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene cluster gspCDEFGHIJKLM codes for various structural components of the type II secretion pathway which is responsible for the secretion of heat-labile enterotoxin by enterotoxigenic Escherichia coli (ETEC). In this work, we used a variety of molecular approaches to elucidate the transcriptional organization of the ETEC type II secretion system and to unravel the mechanisms by which the expression of these genes is controlled. We showed that the gspCDEFGHIJKLM cluster and three other upstream genes, yghJ, pppA, and yghG, are cotranscribed and that a promoter located in the upstream region of yghJ plays a major role in the expression of this 14-gene transcriptional unit. Transcription of the yghJ promoter was repressed 168-fold upon a temperature downshift from 37°C to 22°C. This temperature-induced repression was mediated by the global regulatory proteins H-NS and StpA. Deletion mutagenesis showed that the promoter region encompassing positions −321 to +301 relative to the start site of transcription of yghJ was required for full repression. The yghJ promoter region is predicted to be highly curved and bound H-NS or StpA directly. The binding of H-NS or StpA blocked transcription initiation by inhibiting promoter open complex formation. Unraveling the mechanisms of regulation of type II secretion by ETEC enhances our understanding of the pathogenesis of ETEC and other pathogenic varieties of E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
By global standards the prevalence of community onset expanded-spectrum cephalosporin resistant Escherichia coli (ESC-R-EC) remains low in Australia and New Zealand. Of concern, our countries are in a unique position with high extramural resistance pressure from close population and trade links to Asia-Pacific neighbours with high ESC-R-EC rates. We aim to characterize the risks and dynamics of community onset ESC-R-EC in our low-prevalence region.

Methods
A case-control methodology was used. Patients with ESC-R-EC or susceptible E. coli isolated from blood or urine were recruited at six geographically dispersed tertiary hospitals in Australia and New Zealand. Epidemiological data was prospectively collected and bacteria were retained for analysis.

Results
In total, 182 patients (91 cases and 91 controls) were recruited. Multivariate logistic regression identified risk factors for ESC-R amongst E. coli including birth on the Indian subcontinent (OR=11.13, 2.17-56.98, p=0.003), urinary tract infection in the past year (per infection OR=1.430, 1.13-1.82, p=0.003), travel to South East Asia, China, Indian subcontinent, Africa and the Middle East (OR=3.089, 1.29-7.38, p=0.011), prior exposure to trimethoprim+/-sulfamethoxazole &/or an expanded-spectrum cephalosporin (OR=3.665, 1.30-10.35, p=0.014) and healthcare exposure in the previous six months (OR=3.16, 1.54-6.46, p=0.02).

Amongst our ESC-R-EC the blaCTX-M ESBLs was dominant (83% of ESC-R-EC), and the worldwide pandemic clone ST-131 was frequent (45% of ESC-R-EC).

Conclusion
In our low prevalence setting, ESC-R amongst community onset E. coli may be associated with both ‘export’ from healthcare facilities into the community and direct ‘import’ into the community from high-prevalence regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fresh produce is increasingly implicated in food-related illnesses. Escherichia coli can survive in soil and water and can be transferred onto plant surfaces through farm management practices such as irrigation. A trial was conducted to evaluate the impact of field conditions on E. coli persistence on iceberg lettuce irrigated with contaminated water, and the impact of plant injury on the persistence of E. coli. Lettuce heads were injured at 14, 7, 3, 2, 1, and 0 days before inoculation, with uninjured heads used as a control. All lettuce heads (including controls) were overhead irrigated with a mixture of nonpathogenic E. coli strains (10^sup 7^ CFU/ml). E. coli counts were measured on the day of inoculation and 5 days after, and E. coli was detected on all lettuce head samples. Injury immediately prior to inoculation and harvest significantly (P = 0.00067) increased persistence of E. coli on lettuce plants. Harsh environmental conditions (warm temperatures, limited rainfall) over 5 days resulted in a 2.2-log reduction in E. coli counts on uninjured lettuce plants, and lettuce plants injured more than 2 days prior to inoculation had similar results. Plants with more recent injuries (up to 2 days prior to inoculation) had significantly (P = 7.6 × 10^sup -6^) greater E. coli persistence. Therefore, growers should postpone contaminated water irrigation of lettuce crops with suspected injuries for a minimum of 2 days, or if unavoidable, use the highest microbiological quality of water available, to minimize food safety risks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The HIV-1 Gag precursor protein, Pr55(Gag), is a multi-domain polyprotein that drives HIV-1 assembly. The morphological features of HIV-1 suggested Pr55(Gag) assumes a variety of different conformations during virion assembly and maturation, yet structural determination of HIV-1 Pr55(Gag) has not been possible due to an inability to express and to isolate large amounts of full-length recombinant Pr55(Gag) for biophysical and biochemical analyses. This challenge is further complicated by HIV-1 Gag's natural propensity to multimerize for the formation of viral particle (with ∼2500 Gag molecules per virion), and this has led Pr55(Gag) to aggregate and be expressed as inclusion bodies in a number of in vitro protein expression systems. This study reported the production of a recombinant form of HIV-1 Pr55(Gag) using a bacterial heterologous expression system. Recombinant HIV-1 Pr55(Gag) was expressed with a C-terminal His×6 tag, and purified using a combination of immobilized metal affinity chromatography and size exclusion chromatography. This procedure resulted in the production of milligram quantities of high purity HIV-1 Pr55(Gag) that has a mobility that resembles a trimer in solution using size exclusion chromatography analysis. The high quantity and purity of the full length HIV Gag will be suitable for structural and functional studies to further understand the process of viral assembly, maturation and the development of inhibitors to interfere with the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Gram-negative bacteria such as Escherichia coli or Klebsiella spp. frequently cause bloodstream infections. There has been a worldwide increase in resistance in these species to antibiotics such as third generation cephalosporins, largely driven by the acquisition of extended-spectrum beta-lactamase or plasmid-mediated AmpC enzymes. Carbapenems have been considered the most effective therapy for serious infections caused by such resistant bacteria; however, increased use creates selection pressure for carbapenem resistance, an emerging threat arising predominantly from the dissemination of genes encoding carbapenemases. Recent retrospective data suggest that beta-lactam/beta-lactamase inhibitor combinations, such as piperacillin-tazobactam, may be non-inferior to carbapenems for the treatment of bloodstream infection caused by extended-spectrum beta-lactamase-producers, if susceptible in vitro. This study aims to test this hypothesis in an effort to define carbapenem-sparing alternatives for these infections.

METHODS/DESIGN: The study will use a multicentre randomised controlled open-label non-inferiority trial design comparing two treatments, meropenem (standard arm) and piperacillin-tazobactam (carbapenem-sparing arm) in adult patients with bacteraemia caused by E. coli or Klebsiella spp. demonstrating non-susceptibility to third generation cephalosporins. Recruitment is planned to occur in sites across three countries (Australia, New Zealand and Singapore). A total sample size of 454 patients will be required to achieve 80% power to determine non-inferiority with a margin of 5%. Once randomised, definitive treatment will be for a minimum of 4 days, but up to 14 days with total duration determined by treating clinicians. Data describing demographic information, antibiotic use, co-morbid conditions, illness severity, source of infection and other risk factors will be collected. Vital signs, white cell count, use of vasopressors and days to bacteraemia clearance will be recorded up to day 7. The primary outcome measure will be mortality at 30 days, with secondary outcomes including days to clinical and microbiological resolution, microbiological failure or relapse, isolation of a multi-resistant organism or Clostridium difficile infection.